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1 The comparison theorem

1.1 Continuous maps of sites; the Leray spectral sequence

Let C be a site. We have the following properties:

• The inclusion functor Ab(C)→ PAb(C) has a left adjoint, called sheafification;
• The category Ab(C) has enough injectives (so we can do sheaf cohomology!).

A continuous map of sites f : C → D is a functor f−1 : D → C such that for every covering {Vi → V }
in D:

• the collection {f−1Vi → f−1V } is a covering in C;
• for any morphism T → V the natural morphisms f−1(Vi ×V T ) → f−1(Vi) ×f−1(V ) f

−1(T ) are
isomorphisms.

The notations and directions of the arrows might seem confusing here, but make sense considering the
following example.

Example 1.1.1. Let f : X → Y be a continuous map of topological spaces. Let Xopen and Yopen be
the sites of open subsets of X and Y , respectively. Then f induces a functor f−1 : Yopen → Xopen that
respects coverings and fibered products, and hence a continuous map of sites f : Xopen → Yopen.

Given a continuous map of sites f : C → D (or any functor D → C actually) and presheaf in PAb(C),
we can define the push-forward fpF in PAb(D) to be the presheaf given by fpF (U) = F (f−1(U)); it
defined a functor fp : PAb(C) → PAb(D). It has a left adjoint (the construction is similar to the
construction of the pullback of a sheaf in the topological case) which we will denote by fp : PAb(D)→
PAb(C). So far we haven’t used the continuity of f at all!

If F is an abelian sheaf on C, then it turns out that fpF is a sheaf too. To avoid confusion we denote
the induced functor Sh(C)→ Sh(D) by f∗. This functor, too, has a left adjoint f∗ : Sh(D)→ Sh(C).

A morphism of sites f : C → D is a continuous map of sites such that the functor f∗ : Sh(D) →
Sh(C) is exact. The following proposition will allow us in many cases to check whether a continuous
map of sites is a morphism.

Proposition 1.1.2 (Stacks Tag 00X6). Let f : C → D be a continuous map of sites. Assume the
following:

• D has a terminal object X, and f−1(X) is a terminal object of C;
• D has fiber products, and f−1 commutes with them.

Then f is a morphism of sites.

Let ∗ denote the category consisting of 1 object and the identity morphism. We can endow ∗ with
a Grothendieck topology in a unique way. We have Ab(∗) = PAb(∗), and the global sections functor
gives an equivalence of categories PAb(∗)→ Ab.

Let C be a site and let U be an object of C. Then we have a functor ∗ → C mapping the unique object
of ∗ to U . This gives a continuous map of functors f : C → ∗, and the push-forward f∗ : Ab(C)→ Ab(∗)
is left-exact. By composing this push-forward with the equivalence Ab(∗)→ Ab we find that the global
sections functor ΓU : Ab(C)→ Ab : F 7→ F (U) is left-exact, and we can therefore do sheaf cohomology!
We define the functors Hi(U,−) : Ab(C) → Ab to be the right derived functors of ΓU . If C has a
terminal object X we define Hi(C,−) = Hi(X,−).
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Theorem 1.1.3 (Leray spectral sequence). Let f : C → D be a continuous map of sites. Then for every
abelian sheaf F on C and every object V of D there exists a cohomological spectral sequence

Epq2 := Hp(V,Rqf∗F ) =⇒ Hp+q(f−1V, F ).

Exercise 1.1.4. Prove this. Hint: use the Grothendieck spectral sequence.

Corollary 1.1.5. Let f : C → D be a continuous map of sites. Let F be an abelian sheaf, and let V be
an object of D. Suppose that Rqf∗F = 0 for all q > 0. Then

Hp(V, f∗F ) ∼= Hp(f−1V, F ).

1.2 Complex analytic spaces

An analytic subspace of Cn is a locally ringed space (Y,HY ) of the following form: let U ⊂ Cn be an
(Euclidean) open subset, and let f1, . . . , fr be holomorphic functions on U . We let Y ⊂ U denote the set
of common zeroes of f1, . . . , fr, and define HY = HU/(f1, . . . , fr), where HU is the sheaf of holomorphic
functions on U .

A complex analytic space is a locally ringed space (X,HX) which can be covered by open subsets,
each of which is isomorphic as a locally ringed space to an analytic subspace of some Cn. Often we omit
HX from our notation and simply write X.

A morphism or holomorphic map X → Y of complex analytic spaces is a morphism of locally ringed
spaces.

An analytic sheaf on a complex analytic space X is a sheaf of HX -modules.
Notice that for every complex analytic space X there exists a natural morphism of locally ringed

spaces X → SpecC.

1.3 Covering spaces

Let X be a complex analytic space. Then X comes equipped with a topology, so we can define the site
Xcx as the site of open subspaces of X.

We can define another site Xcov as follows. The objects of Xcov are complex analytic spaces Y
together with a morphism Y → X which is a local isomorphism, that is, every point in Y has an open
neighbourhood that is mapped isomorphically to an open subspace of X by the morphism Y → X. The
morphisms of Xcov are the morphisms of complex analytic spaces compatible with the fixed maps to X.
A collection of morphisms {Yi → Y } is a covering if and only if it is jointly surjective.

Exercise 1.3.1. Show that Xcov is, indeed, a site.

Any open subspace of X is a local isomorphism, so we get an inclusion functor Xcx → Xcov.

Exercise 1.3.2. Prove that this functor defines a continuous map Xcov → Xcx.

Proposition 1.3.3. Let f be the continuous map Xcov → Xcx. Then f∗ is exact.

Corollary 1.3.4. Let F be a sheaf on Xcov. Then we have isomorphisms

Hi(Xcov, F ) ∼= Hi(Xcx, f∗F ).

So the study of cohomology of sheaves on Xcov is covered by that of cohomology of sheaves on
Xcx. On the other hand, we will show that we can assign to every C-scheme locally of finite type a
complex analytic space, that under this ‘analytification’ functor étale morphisms correspond to local
isomorphisms, and the sheaf cohomologies of Xét and Xcov are closely related.

1.4 Analytification

Let X be a scheme locally of finite type over C. We will associate to X a complex analytic space Xan,
called the analytification of X. As a set Xan equals X(C). The topology and structure sheaf are defined
as follows.
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First assume that X is affine. Then X is of the form Spec(C[x1, . . . , xn]/I); we then have a natural
inclusion X(C)→ Cn. We endow X(C) with the subspace topology, where we assume that the topology
on Cn is the Euclidean one. We let HX = HCn/IHCn . We find that Xan = (X(C),HX) is an affine
analytic space.

In general, if X is a scheme locally of finite type over C, then X is obtained by gluing affine open
subsets. The analytification Xan of X is then obtained by gluing the analytifications of these affine open
subsets.

There is a natural map of locally ringed spaces φ : (Xan,HXan
) → (X,OX): the map Xan → X

is simply the inclusion X(C) ⊂ X, and OX → φ∗HXan
sends a regular function f on U ⊂ X to the

corresponding regular (and therefore holomorphic) functions on U(C) ⊂ X(C). For any x ∈ Xan the
morphism of local rings OX,φ(x) → HX,x, and therefore a morphism on the completions ÔX,φ(x) → ĤX,x.

Proposition 1.4.1. The natural morphism ÔX,φ(x) → ĤX,x is an isomorphism.

Let X be a scheme locally of finite type over C. Consider the functor

ΦX : AnSp→ Set : Z 7→ HomC(Z,X).

Here HomC(Z,X) denotes the set of homomorphisms in the category of locally ringed spaces over SpecC.

Theorem 1.4.2. The functor ΦX is representable by Xan: composition with the morphism φ : Xan → X
induces an isomorphism HomC(Z,Xan) ∼= HomC(Z,X).

By the theorem, we see that every morphism f : X → Y of schemes that are of finite type over C
lifts to a unique morphism fan : Xan → Yan such that the following diagram commutes.

Xan
fan //

��

Yan

��
X

f // Y

Proposition 1.4.3. Let f : X → Y be a morphism of schemes of finite type over C, let x ∈ X be a
closed point, and let y = f(x). Then the diagram

OY,y //

��

OX,x

��
HYan,y

// HXan,x

is cartesian, with faithfully flat vertical arrows.

Proof. Don’t know yet.

1.5 The comparison theorem

Let X be a C-scheme locally of finite type, and let Xan be its analytification. We define the site Xcet as
the category of local isomorphisms U → X, and a family {Ui → U} of morphisms in Xcet is a covering
if it is jointly surjective. If Y → X is an étale morphism then Yan → Xan is a local isomorphism, and we
obtain a continuous map Xcet → Xét.

Theorem 1.5.1 (Comparison theorem). Let f : X → S be a morphism of finite type of schemes locally
of finite type over C, so that we have a commutative diagram of continuous maps of sites

Xcet
ε //

fcet

��

Xét

��
Scet

ε // Sét.

If F is a sheaf of sets (resp. sheaf of ind-finite groups (?), resp. torsion sheaf) on Xét, and one of the
following conditions holds:

3



• F is constructible;
• f is proper,

then the natural maps
ε∗(Rqfét∗F )→ (Rqfcet∗ε

∗F )

are bijective for q = 0 (resp. q = 0, 1, resp. q ≥ 0).
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