Nodal curves on surfaces An application of algebraic cobordism

Julian Lyczak

28 November 2014

Table of contents

Curves

Nodal curves on \mathbb{P}^2

Severi varieties Severi degrees Severi degree as polynomials in *d*

Nodal curves on a surface

Vector bundles Chern numbers The number of δ -nodal curves

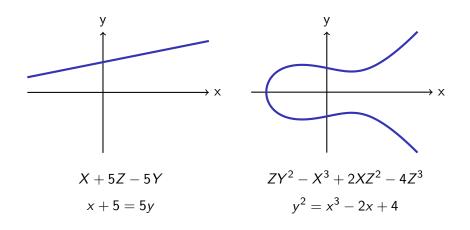
The proof

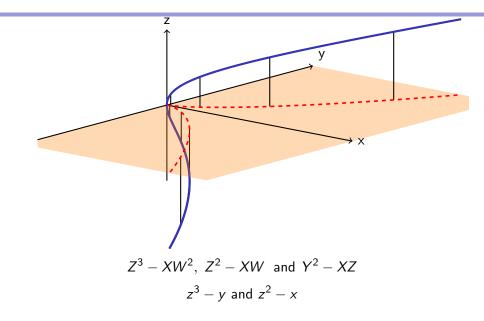
Algebraic cobordism Nodal polynomials - Curves

Curves

What is a curve?

What is a curve?





Smooth curves

Definition of smoothness

A curve is **smooth** if it has a unique tangent line at every point.

Smooth curves

Definition of smoothness

A curve is **smooth** if it has a unique tangent line at every point.

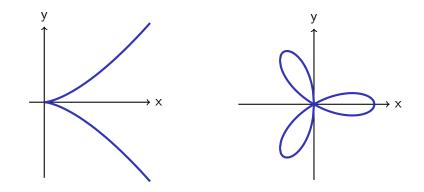
Condition for plane curves to be smooth

A plane curve given by F(X, Y, Z) = 0 is smooth if and only if the derivatives

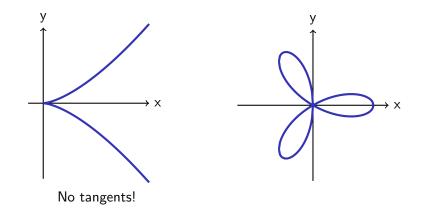
$$\frac{dF}{dX}, \frac{dF}{dY}$$
 and $\frac{dF}{dZ}$

do not vanish simultaneously.

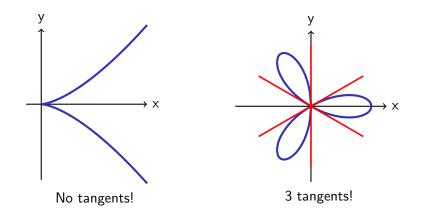
Singularities



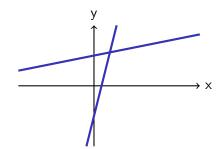
Singularities

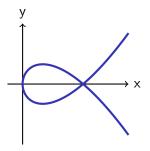


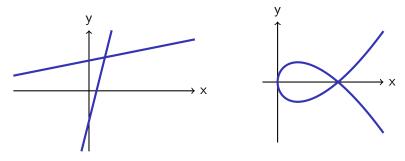
Singularities



Nodal curves



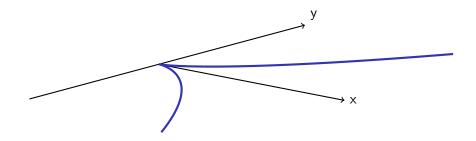


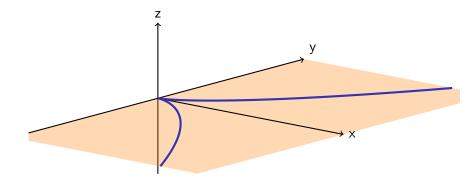


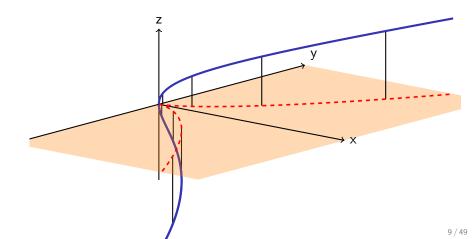
Nodal curves

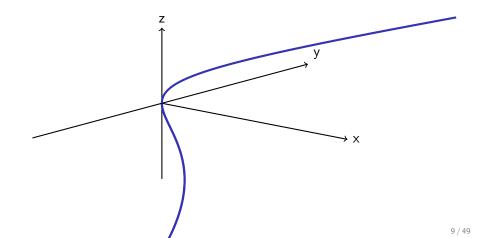
A point on a plane curve is called a **node** if it has two distinct tangent lines.

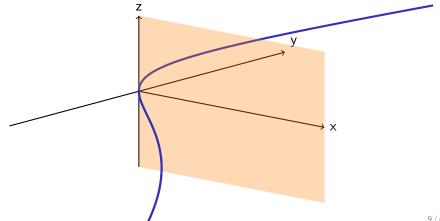
A nodal curve is a plane curve with only nodes as singularities.

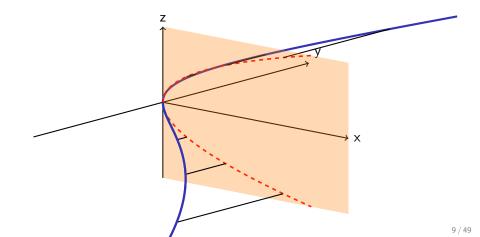


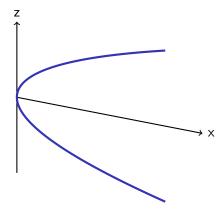












Every curve looks like a space curve Any curve is birational to a smooth curve

Every curve looks like a space curve

Any curve is birational to a smooth curve in \mathbb{P}^3 .

General curves

Every curve looks like a space curve

Any curve is birational to a smooth curve in \mathbb{P}^3 .

Every curve looks like a nodal curve

Any curve is birational to a nodal curve in \mathbb{P}^2 .

Nodal curves on \mathbb{P}^2 :

Severi varieties

Space of all curves

Each tuple $(a_{i,j,k})_{i,j,k}$ with i, j and k non-negative with sum equal to d gives a plane curve

$$F(X,Y,Z) = \sum_{i+j+k=d} a_{i,j,k} X^i Y^j Z^k.$$

Space of all curves

Each tuple $(a_{i,j,k})_{i,j,k}$ with i, j and k non-negative with sum equal to d gives a plane curve

$$F(X,Y,Z) = \sum_{i+j+k=d} a_{i,j,k} X^i Y^j Z^k.$$

So curves in \mathbb{P}^2 of degree *d* are points in $\mathbb{P}^{\binom{d+2}{2}-1}$.

Space of all curves

Each tuple $(a_{i,j,k})_{i,j,k}$ with i, j and k non-negative with sum equal to d gives a plane curve

$$F(X,Y,Z) = \sum_{i+j+k=d} a_{i,j,k} X^i Y^j Z^k.$$

So curves in \mathbb{P}^2 of degree *d* are points in $\mathbb{P}^{\binom{d+2}{2}-1}$.

Severi variety

The Zariski closure of all points in $\mathbb{P}^{\frac{d(d+3)}{2}}$ corresponding to nodal curves of degree d with exactly δ nodes is called the **Severi** variety of type d, δ .

Notation: $\mathcal{V}^{d,\delta}$.

Degree 2 curves

The space of all degree 2 curves is $\mathbb{P}^5,$ as a curve is a linear combination of

$$AX^2 + BXY + CXZ + DY^2 + EYZ + FZ^2.$$

The only degree two curves are smooth conics and line pairs, so a degree 2 curve has at most one node.

Degree 2 curves

The space of all degree 2 curves is \mathbb{P}^5 , as a curve is a linear combination of

$$AX^2 + BXY + CXZ + DY^2 + EYZ + FZ^2.$$

The only degree two curves are smooth conics and line pairs, so a degree 2 curve has at most one node. It is smooth if and only if

$$\det \left(\begin{array}{ccc} 2A & B & C \\ B & 2D & E \\ C & E & 2F \end{array} \right) \neq 0.$$

So $\mathcal{V}^{2,1}$ is of dimension 4.

Degree 3 curves

The space of all degree 3 curves is \mathbb{P}^9 .

- ▶ 3 nodes: a union of three lines. Dimension: 2 + 2 + 2 = 6;
- ▶ 2 nodes: a union of a line and a conic. Dimension: 2 + 5 = 7;
- ▶ 1 node: an irreducible nodal curve. Dimension: ?
- 0 node: smooth cubic curve.

Degree 3 curves

The space of all degree 3 curves is \mathbb{P}^9 .

- ▶ 3 nodes: a union of three lines. Dimension: 2 + 2 + 2 = 6;
- ▶ 2 nodes: a union of a line and a conic. Dimension: 2 + 5 = 7;
- ▶ 1 node: an irreducible nodal curve. Dimension: 8?
- 0 node: smooth cubic curve.

Dimension of the Severi varieties

Severi (1921)

The Severi variety of type d, δ is non-empty for $0 \le \delta \le \frac{d(d-1)}{2}$ and has codimension δ .

Dimension of the Severi varieties

Severi (1921)

The Severi variety of type d, δ is non-empty for $0 \le \delta \le \frac{d(d-1)}{2}$ and has codimension δ .

Harris (1958)

The irreducible nodal curves lie in a single irreducible component of the Severi variety.

Nodal curves on \mathbb{P}^2 :

Severi degree

Degree of a plane curve

Consider the plane \mathbb{P}^2 .

- ▶ Most lines intersect a degree *d* curve in *d* points.
- We could take this as the definition of the degree of a curve.

Degree of a closed subspace of a projective variety

A codimension d subspace intersects a general d-dimensional linear projective subspace in a finite number of point. This is the **degree** of the subspace.

Degree of a closed subspace of a projective variety

A codimension d subspace intersects a general d-dimensional linear projective subspace in a finite number of point. This is the **degree** of the subspace.

- Degree of a curve in \mathbb{P}^2 equals the degree we saw before.
- Degree of a set of points is the number of these points.
- Degree of the total projective space equals 1.

Degree of a closed subspace of a projective variety

A codimension d subspace intersects a general d-dimensional linear projective subspace in a finite number of point. This is the **degree** of the subspace.

- Degree of a curve in \mathbb{P}^2 equals the degree we saw before.
- Degree of a set of points is the number of these points.
- Degree of the total projective space equals 1.

Severi degree

The degree of the Severi variety is called the Severi degree.

A plane in the space of all curves

How can we pick a general linear plane of a given dimension in the total space of all curves of degree d?

A plane in the space of all curves

How can we pick a general linear plane of a given dimension in the total space of all curves of degree d?

For a curve to pass through a given point gives a linear condition on the coefficients.

Picking k general points gives the condition of a k plane of codimension k.

A plane in the space of all curves

How can we pick a general linear plane of a given dimension in the total space of all curves of degree d?

For a curve to pass through a given point gives a linear condition on the coefficients.

Picking k general points gives the condition of a k plane of codimension k.

Geometrical interpretation of Severi degree The Severi degree $\mathcal{N}^{d,\delta}$ equals the number of degree d curves through $\frac{d(d+3)}{2} - \delta$ points.

Consider the conics.

- Clearly $\delta = 0$ gives 1, as for any degree.
- Now for $\delta = 1$: how many line pairs pass through 4 points?

Consider the conics.

- Clearly $\delta = 0$ gives 1, as for any degree.
- Now for δ = 1: how many line pairs pass through 4 points? So 3.

Now for the cubics.

• For $\delta = 3$: How many line triples pass through 6 points?

Now for the cubics.

► For $\delta = 3$: How many line triples pass through 6 points? $\mathcal{N}^{3,3} = 5 \cdot 3 \cdot 1 = 15$.

Now for the cubics.

- ► For $\delta = 3$: How many line triples pass through 6 points? $\mathcal{N}^{3,3} = 5 \cdot 3 \cdot 1 = 15.$
- For δ = 2: How many combinations of a line and a conic pass through 7 points?

Now for the cubics.

- ► For $\delta = 3$: How many line triples pass through 6 points? $\mathcal{N}^{3,3} = 5 \cdot 3 \cdot 1 = 15.$
- For δ = 2: How many combinations of a line and a conic pass through 7 points?
 N^{3,2} = (⁷₂) = 21.

Severi degree for $\delta = 1$

An irreducible degree 3 curve, not as well understood as lines and conics.

Severi degree for $\delta = 1$

An irreducible degree 3 curve, not as well understood as lines and conics.

Steiner (1848)

Number of nodal curves of degree d through $\frac{d(d+3)}{2} - 1$ points is

 $3(d-1)^2$.

Severi degree for $\delta = 1$

An irreducible degree 3 curve, not as well understood as lines and conics.

Steiner (1848)

Number of nodal curves of degree d through $\frac{d(d+3)}{2} - 1$ points is

$$3(d-1)^2$$
.

So in our notation $\mathcal{N}^{3,1} = 12$.

Nodal curves on \mathbb{P}^2 :

Severi degree as polynomials in d

Severi degree for $\delta = 2$ and $\delta = 3$

Cayley (1863)

Number of nodal curves of degree *d* through $\frac{d(d+3)}{2} - 2$ points is

$$\frac{3}{2}(d-1)(d-2)(3d^2-3d-11).$$

Severi degree for $\delta = 2$ and $\delta = 3$

Cayley (1863)

Number of nodal curves of degree *d* through $\frac{d(d+3)}{2} - 2$ points is

$$\frac{3}{2}(d-1)(d-2)(3d^2-3d-11).$$

Roberts (1876)

Number of nodal curves of degree *d* through $\frac{d(d+3)}{2} - 3$ points is

$$\frac{9}{2}d^6 - 27d^5 + \frac{9}{2}d^4 + \frac{423}{2}d^3 - 229d^2 - \frac{829}{2}d + 525d^2 - \frac{10}{2}d + \frac{10}$$

for $d \geq 3$.

Nodal polynomials

Di Fransesco's and Itzykson's conjecture (1994) There exists polynomials $N_{\delta}(d)$ in d of degree 2δ , such that

 $N_{\delta}(d) = \mathcal{N}^{d,\delta}$

for large enough d.

Nodal polynomials

Di Fransesco's and Itzykson's conjecture (1994)

There exists polynomials $N_{\delta}(d)$ in d of degree 2δ , such that

 $N_{\delta}(d) = \mathcal{N}^{d,\delta}$

for large enough d.

It holds for δ equal to 0, 1, 2 and 3. It was proven for $\delta = 4$, 5 and 6 by Vainsencher in 1995. Kleiman and Piene extended Vainsencher's ideas up to 7 and 8 nodes.

Nodal polynomials

Di Fransesco's and Itzykson's conjecture (1994)

There exists polynomials $N_{\delta}(d)$ in d of degree 2δ , such that

 $N_{\delta}(d) = \mathcal{N}^{d,\delta}$

for large enough d.

It holds for δ equal to 0, 1, 2 and 3. It was proven for $\delta = 4$, 5 and 6 by Vainsencher in 1995. Kleiman and Piene extended Vainsencher's ideas up to 7 and 8 nodes.

Fomin and Mikhalkin (2009)

The statement is true for all δ .

Nodal curves on a surface:

Vector bundles

Note that on the space \mathbb{P}^2 we have a vector space $\mathcal{O}(d)$, whose elements give a value of \mathbb{C} at each point of \mathbb{P}^2 .

Note that on the space \mathbb{P}^2 we have a vector space $\mathcal{O}(d)$, whose elements give a value of \mathbb{C} at each point of \mathbb{P}^2 .

Vector bundles

Define a **vector bundle** of **rank** r on a surface S, as a vector space whose elements, called **global sections**, give us values in \mathbb{C}^r at each point of S.

Note that on the space \mathbb{P}^2 we have a vector space $\mathcal{O}(d)$, whose elements give a value of \mathbb{C} at each point of \mathbb{P}^2 .

Vector bundles

Define a **vector bundle** of **rank** r on a surface S, as a vector space whose elements, called **global sections**, give us values in \mathbb{C}^r at each point of S.

Line bundles

A vector bundle \mathcal{L} of rank 1 is called a **line bundle**.

The points on a surface S where a global section of \mathcal{L} gives zero is a curve.

We call this a **curve in** \mathcal{L} .

k-ample line bundles

Assumption on line bundles

A line bundle \mathcal{L} is called *k*-ample if for all k + 1 points p_i and numbers $\alpha_i \in \mathbb{C}$, there exists a global section of \mathcal{L} which gives α_i at p_i .

k-ample line bundles

Assumption on line bundles

A line bundle \mathcal{L} is called *k*-ample if for all k + 1 points p_i and numbers $\alpha_i \in \mathbb{C}$, there exists a global section of \mathcal{L} which gives α_i at p_i .

Note that a k-ample line bundle \mathcal{L} has global sections vanishing at any k + 1 points. So there are curves in \mathcal{L} through any k + 1 points.

k-ample line bundles

Assumption on line bundles

A line bundle \mathcal{L} is called *k*-ample if for all k + 1 points p_i and numbers $\alpha_i \in \mathbb{C}$, there exists a global section of \mathcal{L} which gives α_i at p_i .

Note that a k-ample line bundle \mathcal{L} has global sections vanishing at any k + 1 points. So there are curves in \mathcal{L} through any k + 1 points.

The line bundle $\mathcal{O}(d)$ on \mathbb{P}^2 is $\frac{d(d+3)}{2} - 1$ -ample.

Chern numbers

Nodal curves on a surface:

Chern numbers

Definition of Chern subspaces

Consider a vector bundle \mathcal{F} of rank r on a space X, then any r - p + 1 linearly independent general global sections s_i determine a subspace of codimension p, by

 $c_p(\mathcal{F}) := \{x \in S \mid \dim \operatorname{Span}(s_1(x), s_2(x), \dots, s_{r-p+1}(x)) \leq r-p\}$

depending on the sections. This is called a *p*th Chern subspace of \mathcal{F} .

The space $c_p(\mathcal{F})$ does not actually have to have codimension p, it can also be empty. As is the case for p > r.

Chern numbers

Intersection of Chern subspaces

For any two vector bundles ${\cal F}$ and ${\cal G}$ and integers p and q there are choices of sections such that

$$c_{
ho}(\mathcal{F})c_{q}(\mathcal{G}):=c_{
ho}(\mathcal{F})\cap c_{q}(\mathcal{G})$$

is of codimension p + q.

Chern numbers

If we consider such a subspace

$$c_{p_1}(\mathcal{F}) \dots c_{p_s}(\mathcal{F}) c_{q_1}(\mathcal{G}) \dots c_{q_t}(\mathcal{G})$$

of dimension 0, it is simply a finite number of points. This is called a **Chern number** of \mathcal{F} and \mathcal{G} and is independent of all the chosen global sections!

Chern numbers on the projective plane

Consider $\mathcal{O}(d)$. It has only one Chern number: we have that $c_0(\mathcal{O}(d)) = X$ and $c_1(\mathcal{O}(d))$ is any curve of degree d. If we take another curve, for example just d lines, to compute

$$c_1(\mathcal{O}(d))^2 = c_1(\mathcal{O}(d))c_1(\mathcal{O}(d)) = d^2.$$

The only Chern numbers of $\mathcal{O}(d)$ and $\mathcal{O}(e)$ are d^2 , de and e^2 .

Nodal curves on a surface

L The number of δ -nodal curves

Nodal curves on a surface:

The number of δ -nodal curves

The generalized Severi degree

A section $s \in \mathcal{L}$ and a multiple λs for $\lambda \in \mathbb{C}$ give the same curve.

So curves in \mathcal{L} correspond to points in a projective space $\mathbb{P}^{\nu-1} = \mathbb{P}(\mathcal{L})$, where ν is the dimension of the vector space \mathcal{L} .

The number of $\delta\text{-nodal}$ curves

The number of curves with δ nodes coming from a global section in a general δ -dimensional plane in $\mathbb{P}(\mathcal{L})$ is called the **number of** δ -nodal curves in \mathcal{L} .

Göttsche showed that this is well-defined if \mathcal{L} is $(5\delta - 1)$ -ample.

 \Box The number of δ -nodal curves

Polynomials in Chern numbers

The tangent sheaf \mathcal{T}_S of a surface is a two-dimensional vector bundle.

Theorem

The number of δ -nodal curves in a *k*-ample line bundle \mathcal{L} , for large enough *k* and δ , is a polynomial of degree δ in the Chern numbers of \mathcal{L} and \mathcal{T}_{S} . These are

 $c_1(\mathcal{L})^2, \quad c_1(\mathcal{L})c_1(\mathcal{T}_S), \quad c_1(\mathcal{T}_S)^2 \quad \text{and} \quad c_2(\mathcal{T}_S).$

— The proof

-Algebraic cobordism

The proof:

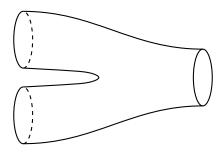
Algebraic cobordism

The proof

-Algebraic cobordism

Classical cobordism theory

A **cobordism** is a manifold with a left and a right boundary. We say that two spaces are **cobordant** if they occur at the respective left and right boundary.



└─ Algebraic cobordism

Algebraically cobordant

There are certain pairs of surfaces (W, Z) which are called algebraically cobordant.

Algebraic cobordism of surfaces, ω_2 , is defined as the Q-vector space of formal finite sums

$$\sum_i q_i[S_i],$$

for surfaces S_i , subject to the following two conditions:

- \triangleright [W] = [Z] for all algebraically cobordant W and Z;
- $[S_1 \mid S_2] = [S_1] + [S_2]$ for all surfaces S_1 and S_2 .

-Algebraic cobordism

Algebraic cobordism with line bundles

There are certain pairs of surfaces with line bundles $(W, \mathcal{L}), (Z, \mathcal{M})$ which are called algebraically cobordant.

Algebraic cobordism of surfaces with line bundles, $\omega_{2,1}$, is defined as the Q-vector space of formal finite sums

$$\sum_i q_i[S_i, \mathcal{L}_i],$$

for surfaces S_i with a line bundle \mathcal{L}_i , subject to the following two conditions:

- $[W, \mathcal{L}] = [Z, \mathcal{M}]$ for algebraically cobordant (W, \mathcal{L}) and (Z, \mathcal{M}) ;
- ▶ $[S_1 \coprod S_2, \mathcal{L}] = [S_1, \mathcal{L}|_{S_1}] + [S_2, \mathcal{L}|_{S_1}]$ for all surfaces S_1 and S_2 and a line bundle \mathcal{L} on the disjoint union $S_1 \coprod S_2$.

The proof

-Algebraic cobordism

Algebraic cobordism classes and Chern numbers

We can calculate Chern numbers for such sums of surfaces, or even surfaces with a line bundle, by calculating the analogous Chern number of all terms.

Algebraic cobordism is determined by Chern numbers

Any class $\sum q_i[S_i]$ in algebraic cobordism is uniquely determined by the Chern numbers of the respective tangent bundles.

So the class of [S] is uniquely determined by $c_1(\mathcal{T}_S)^2$ and $c_2(\mathcal{T}_S)$.

Algebraic cobordism with line bundles by Chern numbers Any class $\sum q_i[S_i, \mathcal{L}_i]$ in $\omega_{2,1}$ is uniquely determined by the Chern numbers of the tangent bundle and line bundles.

So the class of $[S, \mathcal{L}]$ is uniquely determined by $c_1(\mathcal{L})^2$, $c_1(\mathcal{L})c_1(\mathcal{T}_S)$, $c_1(\mathcal{T}_S)^2$ and $c_2(\mathcal{T}_S)$.

└─Nodal polynomials

The proof:

Nodal polynomials

└─ Nodal polynomials

Generating function

For a surface S with a line bundle \mathcal{L} , Göttsche defined a space $S_{2\delta}$ of dimension 2δ and a vector bundle $\mathcal{L}_{3\delta}$ of rank 3δ .

Let $d_{\delta}(S, \mathcal{L})$ denote the number of points in the Chern number $c_{2\delta}(\mathcal{L}_{3\delta})$ and define $d_0(S, \mathcal{L}) = 1$.

Göttsche (1997)

If \mathcal{L} is a $(5\delta - 1)$ -ample line bundle on a surface, then $d_{\delta}(\mathcal{L})$ equals the number δ -nodal curves in \mathcal{L} .

Generating function of Chern numbers

We define

$$\phi(S,\mathcal{L}) = \sum_{k\geq 0} d_k(S,\mathcal{L}) x^k.$$

-Nodal polynomials

Tzeng (2012)

Let $S = S_1 \coprod S_2$ be the disjoint union of two surfaces with a line bundle \mathcal{L} on S. Then we have

$$\phi(S,\mathcal{L}) = \phi(S_1,\mathcal{L}|_{S_1})\phi(S_2,\mathcal{L}|_{S_2}).$$

For any algebraically cobordant pair $(W, \mathcal{M}), (Z, \mathcal{N})$ of surfaces we have

$$\phi(W, \mathcal{M}) = \phi(Z, \mathcal{N}).$$

-Nodal polynomials

Group homomorphism

The two results of Tzeng give us exactly the following theorem. Tzeng (2012)

The map ϕ extends to a linear map

$$\omega_{2,1} \rightarrow \mathbb{Q}[[t]]^*$$

of vector spaces over \mathbb{Q} .

-The proof

-Nodal polynomials

Basis polynomials

By the map ϕ we get four polynomials A(x), B(x), C(x) and D(x) corresponding to the four Chern numbers, which form a basis for $\mathbb{Q}^4 \cong \omega_{2,1}$. So

$$\phi(S, \mathcal{L}) = A(x)^{c_1(\mathcal{L})^2} B(x)^{c_1(\mathcal{L})c_1(\mathcal{T}_5)} C(x)^{c_1(\mathcal{T}_5)^2} D(x)^{c_2(\mathcal{T}_5)}$$

└─ The proof

└─ Nodal polynomials

Writing $A(x) = 1 + a_1x + a_2x^2 + ...$ and similarly for B(x), C(x) and D(x), we get

$$\begin{split} \phi(S,\mathcal{L}) &= (1+a_1x+\ldots)^{\kappa} (1+b_1x+\ldots)^{\lambda} \cdot \\ &\quad (1+c_1x+\ldots)^{\mu} (1+d_1x+\ldots)^{\nu} \\ &= 1+(a_1\kappa+b_1\lambda+c_1\mu+d_1\nu) x \\ &\quad + \left(a_2\kappa+\binom{\kappa}{2}a_1^2+b_2\lambda+\binom{\lambda}{2}b_1^2+ \\ &\quad c_2\mu+\binom{\mu}{2}c_1^2+d_2\nu+\binom{\nu}{2}d_1^2\right) x^2 \\ &\quad + \dots \end{split}$$

└─ The proof

└─ Nodal polynomials

Writing $A(x) = 1 + a_1x + a_2x^2 + ...$ and similarly for B(x), C(x) and D(x), we get

$$\phi(S, \mathcal{L}) = (1 + a_1 x + \dots)^{\kappa} (1 + b_1 x + \dots)^{\lambda} \cdot (1 + c_1 x + \dots)^{\mu} (1 + d_1 x + \dots)^{\nu}$$

= $1 + (a_1 \kappa + b_1 \lambda + c_1 \mu + d_1 \nu) x$
+ $\left(a_2 \kappa + \binom{\kappa}{2} a_1^2 + b_2 \lambda + \binom{\lambda}{2} b_1^2 + c_2 \mu + \binom{\mu}{2} c_1^2 + d_2 \nu + \binom{\nu}{2} d_1^2\right) x^2$
+ \dots

 $d_1(S, \mathcal{L})$

-The proof

└─ Nodal polynomials

Writing $A(x) = 1 + a_1x + a_2x^2 + ...$ and similarly for B(x), C(x) and D(x), we get

$$\begin{split} \phi(S,\mathcal{L}) &= (1+a_1x+\ldots)^{\kappa} (1+b_1x+\ldots)^{\lambda} \cdot \\ &\quad (1+c_1x+\ldots)^{\mu} (1+d_1x+\ldots)^{\nu} \\ &= 1+(a_1\kappa+b_1\lambda+c_1\mu+d_1\nu)x \\ &\quad + \left(a_2\kappa+\binom{\kappa}{2}a_1^2+b_2\lambda+\binom{\lambda}{2}b_1^2+ \\ &\quad c_2\mu+\binom{\mu}{2}c_1^2+d_2\nu+\binom{\nu}{2}d_1^2\right)x^2 \\ &\quad + \dots \end{split}$$

 $d_1(S, \mathcal{L})$

 $d_2(S, \mathcal{L})$

-Nodal polynomials

Nodal polynomials

If we calculate the coefficients, we get

$$egin{split} d_1 &= 3\kappa - 2\lambda +
u, \ d_2 &= rac{1}{2} \left(d_1 (d_1 - 7) - 6 \mu + 25 \lambda - 21 \kappa
ight). \end{split}$$

Nodal polynomials

The number d_k is a polynomial of degree k in κ , λ , μ and ν . If \mathcal{L} is a *l*-ample line bundle on S, then by Göttsche's result we see that for $0 \le \delta \le \lfloor \frac{l+1}{5} \rfloor$ we have that d_{δ} equals the number of nodal curves in a general δ -dimensional plane in $\mathbb{P}(\mathcal{L})$. └─ Nodal polynomials

Nodal polynomials

If we calculate the coefficients, we get

$$egin{split} d_1 &= 3\kappa - 2\lambda +
u, \ d_2 &= rac{1}{2} \left(d_1 (d_1 - 7) - 6 \mu + 25 \lambda - 21 \kappa
ight). \end{split}$$

Nodal polynomials

The number d_k is a polynomial of degree k in κ , λ , μ and ν . If \mathcal{L} is a *l*-ample line bundle on S, then by Göttsche's result we see that for $0 \leq \delta \leq \lfloor \frac{l+1}{5} \rfloor$ we have that d_{δ} equals the number of nodal curves in a general δ -dimensional plane in $\mathbb{P}(\mathcal{L})$. Kool, Shende and Thomas even proved that the statement holds for all $0 \leq \delta \leq l$.

-Nodal polynomials

The Severi degree $\mathcal{N}^{d,1}$

Let us calculate Chern subspace for $\mathcal{T}_{\mathbb{P}^2}$. Use $x \frac{d}{dx}$ and $y \frac{d}{dy}$ for $c_1(\mathcal{T}_{\mathbb{P}^2})$: This gives the two axes and the line at infinity.

Use
$$x \frac{d}{dx} + y \frac{d}{dy}$$
 for $c_2(\mathcal{T}_{\mathbb{P}^2})$:
This vanishes precisely at $[1:0:0]$, $[0:1:0]$ and $[0:0:1]$.

So
$$c_1(\mathcal{L})^2 = d^2$$
, $c_1(\mathcal{L})c_1(\mathcal{T}_S) = 3d$, $c_1(\mathcal{T}_S)^2 = 9$ and $c_2(\mathcal{T}_S) = 3$.

This gives

$$d_1(\mathbb{P}^2, \mathcal{O}(d)) = 3\kappa - 2\lambda + \nu = 3d^2 - 2 \cdot 3d + 3 = 3(d-1)^2.$$

└─Nodal polynomials

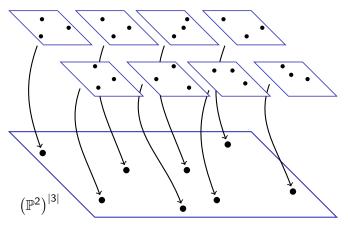
Thank you for your attention

Table of Severi degrees							
	1	2	3	4	5	6	7
$\mathcal{N}^{d,0}$	1	1	1	1	1	1	1
$\mathcal{N}^{d,1}$	0	3	12	27	48	75	108
$\mathcal{N}^{d,2}$	0	0	21	225	882	2370	5175
$\mathcal{N}^{d,3}$	0	0	15	675	7915	41310	145383
$\mathcal{N}^{d,4}$	0	0	0	666	36975	437517	2667375
$\mathcal{N}^{d,5}$	0	0	0	378	90027	2931831	33720354
$\mathcal{N}^{d,6}$	0	0	0	105	109781	12597900	302280963
$\mathcal{N}^{d,7}$	0	0	0	0	65949	34602705	1950179922
$\mathcal{N}^{d,8}$	0	0	0	0	26136	59809860	9108238023
$\mathcal{N}^{d,9}$	0	0	0	0	6930	63338881	30777542450
$\mathcal{N}^{d,10}$	0	0	0	0	945	40047888	74808824084
T I . II		c			,	, ,	1.0

The table is from *Plane curves, node polynomials and floor diagrams*, F.S. Block's dissertation at the University of Michigan 2001.

Definition of Hilbert schemes

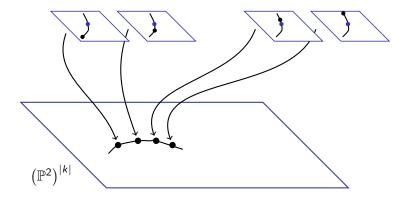
Let k be a non-negative integer and S a surface. A space $S^{|k|}$ whose points represent k points in S is called a **Hilbert scheme** of points.

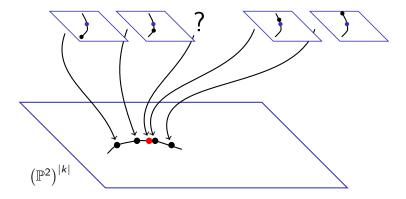


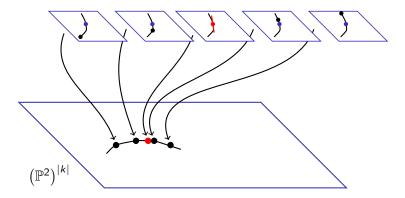
Properties of Hilbert schemes

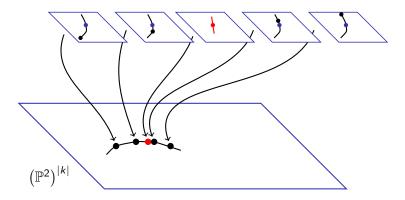
Any smooth projective surface has a unique Hilbert scheme of k points, and it is

- smooth;
- of dimension 2k;
- proper.









Degree d functions on Hilbert scheme of the projective plane

Consider the projective plane and the Hilbert scheme of k points.

- ► A degree *d* function can be evaluated at the *k* points represented by the point on the Hilbert scheme.
- ► This gives a vector bundle O(d)_k on the Hilbert scheme with the same global sections but of rank k!
- It will vanish if the corresponding degree d curve passes through these points.
- If it vanishes at a point representing a double point, the corresponding curve admits the corresponding tangent.

Similarly, a line bundle \mathcal{L} on a surface S will give a vector bundle \mathcal{L}_k on $S^{|k|}$ of rank k.

Singular points

To ensure we get singularities, we want a point with two distinct tangent direction with length zero!

Singular points

To ensure we get singularities, we want a point with two distinct tangent direction with length zero!

"Singular points" on the Hilbert scheme

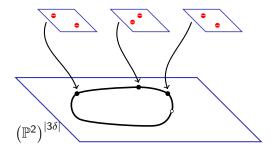
Let us write $S_{2\delta}$ for the points in $S^{|3\delta|}$ consisting of δ points each given with two zero directions. It has dimension 2δ .

Singular points

To ensure we get singularities, we want a point with two distinct tangent direction with length zero!

"Singular points" on the Hilbert scheme

Let us write $S_{2\delta}$ for the points in $S^{|3\delta|}$ consisting of δ points each given with two zero directions. It has dimension 2δ .



The number of δ -nodal curves

The vector bundle $\mathcal{L}_{3\delta}$ on the Hilbert scheme of 3δ points of a surface *S* restricts to a vector bundle on $S_{2\delta}$, the subspace of "singular points" on the Hilbert scheme.

Let $d_{\delta}(\mathcal{L})$ denote the number of points in the Chern number $c_{2\delta}(\mathcal{L}_{3\delta})$.

Göttsche (1997)

If \mathcal{L} is a $(5\delta - 1)$ -ample line bundle on a surface, then $d_{\delta}(\mathcal{L})$ equals the number δ -nodal curves in \mathcal{L} .