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ZY 2 − X 3 + 2XZ 2 − 4Z 3

y2 = x3 − 2x + 4
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Smooth curves

Definition of smoothness
A curve is smooth if it has a unique tangent line at every point.

Condition for plane curves to be smooth

A plane curve given by F (X ,Y ,Z ) = 0 is smooth if and only if the
derivatives

dF

dX
,

dF

dY
and

dF

dZ

do not vanish simultaneously.
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Nodal curves
A point on a plane curve is called a node if it has two distinct
tangent lines.
A nodal curve is a plane curve with only nodes as singularities.
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Every curve looks like a space curve

Any curve is birational to a smooth curve

in P3.

Every curve looks like a nodal curve

Any curve is birational to a nodal curve in P2.
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Nodal curves on P2

Severi varieties

Space of all curves

Each tuple (ai ,j ,k)i ,j ,k with i , j and k non-negative with sum equal
to d gives a plane curve

F (X ,Y ,Z ) =
∑

i+j+k=d

ai ,j ,kX iY jZ k .

So curves in P2 of degree d are points in P(d+2
2 )−1.

Severi variety

The Zariski closure of all points in P
d(d+3)

2 corresponding to nodal
curves of degree d with exactly δ nodes is called the Severi
variety of type d , δ.

Notation: Vd ,δ.
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Nodal curves on P2

Severi varieties

Degree 2 curves

The space of all degree 2 curves is P5, as a curve is a linear
combination of

AX 2 + BXY + CXZ + DY 2 + EYZ + FZ 2.

The only degree two curves are smooth conics and line pairs, so a
degree 2 curve has at most one node.

It is smooth if and only if

det

 2A B C
B 2D E
C E 2F

 6= 0.

So V2,1 is of dimension 4.
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Nodal curves on P2

Severi varieties

Degree 3 curves

The space of all degree 3 curves is P9.

I 3 nodes: a union of three lines. Dimension: 2 + 2 + 2 = 6;

I 2 nodes: a union of a line and a conic. Dimension: 2 + 5 = 7;

I 1 node: an irreducible nodal curve. Dimension:

8

?

I 0 node: smooth cubic curve.

14 / 49



Nodal curves on surfaces

Nodal curves on P2

Severi varieties

Degree 3 curves

The space of all degree 3 curves is P9.

I 3 nodes: a union of three lines. Dimension: 2 + 2 + 2 = 6;

I 2 nodes: a union of a line and a conic. Dimension: 2 + 5 = 7;

I 1 node: an irreducible nodal curve. Dimension: 8?

I 0 node: smooth cubic curve.

14 / 49



Nodal curves on surfaces

Nodal curves on P2

Severi varieties

Dimension of the Severi varieties

Severi (1921)

The Severi variety of type d , δ is non-empty for 0 ≤ δ ≤ d(d−1)
2

and has codimension δ.

Harris (1958)

The irreducible nodal curves lie in a single irreducible component
of the Severi variety.

15 / 49



Nodal curves on surfaces

Nodal curves on P2

Severi varieties

Dimension of the Severi varieties

Severi (1921)

The Severi variety of type d , δ is non-empty for 0 ≤ δ ≤ d(d−1)
2

and has codimension δ.

Harris (1958)

The irreducible nodal curves lie in a single irreducible component
of the Severi variety.

15 / 49



Nodal curves on surfaces

Nodal curves on P2

Severi degrees

Nodal curves on P2:

Severi degree

16 / 49



Nodal curves on surfaces

Nodal curves on P2

Severi degrees

Degree of a plane curve

Consider the plane P2.

I Most lines intersect a degree d curve in d points.

I We could take this as the definition of the degree of a curve.
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Nodal curves on P2

Severi degrees

Degree of a closed subspace of a projective variety

A codimension d subspace intersects a general d-dimensional linear
projective subspace in a finite number of point. This is the degree
of the subspace.

I Degree of a curve in P2 equals the degree we saw before.

I Degree of a set of points is the number of these points.

I Degree of the total projective space equals 1.

Severi degree

The degree of the Severi variety is called the Severi degree.
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Nodal curves on P2

Severi degrees

A plane in the space of all curves
How can we pick a general linear plane of a given dimension in the
total space of all curves of degree d?

For a curve to pass through a given point gives a linear condition
on the coefficients.

Picking k general points gives the condition of a k plane of
codimension k.

Geometrical interpretation of Severi degree

The Severi degree N d ,δ equals the number of degree d curves
through d(d+3)

2 − δ points.

19 / 49
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Severi degrees

Severi degree for d = 2

Consider the conics.

I Clearly δ = 0 gives 1, as for any degree.

I Now for δ = 1: how many line pairs pass through 4 points?

So 3.
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Severi degrees

Severi degree for d = 3

Now for the cubics.

I For δ = 3: How many line triples pass through 6 points?

N 3,3 = 5 · 3 · 1 = 15.

I For δ = 2: How many combinations of a line and a conic pass
through 7 points?
N 3,2 =

(7
2

)
= 21.
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Severi degrees

Severi degree for δ = 1

An irreducible degree 3 curve, not as well understood as lines and
conics.

Steiner (1848)

Number of nodal curves of degree d through d(d+3)
2 − 1 points is

3(d − 1)2.

So in our notation N 3,1 = 12.
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Severi degree as polynomials in d

Severi degree for δ = 2 and δ = 3

Cayley (1863)

Number of nodal curves of degree d through d(d+3)
2 − 2 points is

3

2
(d − 1)(d − 2)(3d2 − 3d − 11).

Roberts (1876)

Number of nodal curves of degree d through d(d+3)
2 − 3 points is

9

2
d6 − 27d5 +

9

2
d4 +

423

2
d3 − 229d2 − 829

2
d + 525

for d ≥ 3.
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Severi degree as polynomials in d

Nodal polynomials

Di Fransesco’s and Itzykson’s conjecture (1994)

There exists polynomials Nδ(d) in d of degree 2δ, such that

Nδ(d) = N d ,δ

for large enough d .

It holds for δ equal to 0, 1, 2 and 3.
It was proven for δ = 4, 5 and 6 by Vainsencher in 1995.
Kleiman and Piene extended Vainsencher’s ideas up to 7 and 8
nodes.

Fomin and Mikhalkin (2009)

The statement is true for all δ.
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Nodal curves on a surface

Vector bundles

Vector bundles
Note that on the space P2 we have a vector space O(d), whose
elements give a value of C at each point of P2.

Vector bundles
Define a vector bundle of rank r on a surface S , as a vector
space whose elements, called global sections, give us values in Cr

at each point of S .

Line bundles
A vector bundle L of rank 1 is called a line bundle.

The points on a surface S where a global section of L gives zero is
a curve.
We call this a curve in L.
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Vector bundles

k-ample line bundles

Assumption on line bundles

A line bundle L is called k-ample if for all k + 1 points pi and
numbers αi ∈ C, there exists a global section of L which gives αi

at pi .

Note that a k-ample line bundle L has global sections vanishing at
any k + 1 points.
So there are curves in L through any k + 1 points.

The line bundle O(d) on P2 is d(d+3)
2 − 1-ample.
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Chern numbers
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Chern numbers

Definition of Chern subspaces

Consider a vector bundle F of rank r on a space X , then any
r − p + 1 linearly independent general global sections si determine
a subspace of codimension p, by

cp(F) := {x ∈ S | dimSpan (s1(x), s2(x), . . . , sr−p+1(x)) ≤ r − p}

depending on the sections. This is called a pth Chern subspace of
F .

The space cp(F) does not actually have to have codimension p, it
can also be empty. As is the case for p > r .
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Chern numbers

Chern numbers

Intersection of Chern subspaces

For any two vector bundles F and G and integers p and q there
are choices of sections such that

cp(F)cq(G) := cp(F) ∩ cq(G)

is of codimension p + q.

Chern numbers
If we consider such a subspace

cp1(F) . . . cps (F)cq1(G) . . . cqt (G)

of dimension 0, it is simply a finite number of points. This is called
a Chern number of F and G and is independent of all the chosen
global sections!
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Nodal curves on a surface

Chern numbers

Chern numbers on the projective plane

Consider O(d). It has only one Chern number: we have that
c0(O(d)) = X and c1(O(d)) is any curve of degree d . If we take
another curve, for example just d lines, to compute

c1(O(d))2 = c1(O(d))c1(O(d)) = d2.

The only Chern numbers of O(d) and O(e) are d2, de and e2.
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Nodal curves on a surface:

The number of δ-nodal curves
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The number of δ-nodal curves

The generalized Severi degree

A section s ∈ L and a multiple λs for λ ∈ C give the same curve.

So curves in L correspond to points in a projective space
Pv−1 = P(L), where v is the dimension of the vector space L.

The number of δ-nodal curves
The number of curves with δ nodes coming from a global section
in a general δ-dimensional plane in P(L) is called the number of
δ-nodal curves in L.

Göttsche showed that this is well-defined if L is (5δ − 1)-ample.
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Nodal curves on a surface

The number of δ-nodal curves

Polynomials in Chern numbers

The tangent sheaf TS of a surface is a two-dimensional vector
bundle.

Theorem
The number of δ-nodal curves in a k-ample line bundle L, for large
enough k and δ, is a polynomial of degree δ in the Chern numbers
of L and TS . These are

c1(L)2, c1(L)c1(TS), c1(TS)2 and c2(TS).
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The proof:

Algebraic cobordism
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The proof

Algebraic cobordism

Classical cobordism theory

A cobordism is a manifold with a left and a right boundary. We
say that two spaces are cobordant if they occur at the respective
left and right boundary.
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The proof

Algebraic cobordism

Algebraically cobordant

There are certain pairs of surfaces (W ,Z ) which are called
algebraically cobordant.

Algebraic cobordism of surfaces, ω2, is defined as the Q-vector
space of formal finite sums ∑

i

qi [Si ],

for surfaces Si , subject to the following two conditions:

I [W ] = [Z ] for all algebraically cobordant W and Z ;

I [S1
∐

S2] = [S1] + [S2] for all surfaces S1 and S2.
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The proof

Algebraic cobordism

Algebraic cobordism with line bundles
There are certain pairs of surfaces with line bundles
(W ,L), (Z ,M) which are called algebraically cobordant.

Algebraic cobordism of surfaces with line bundles, ω2,1, is
defined as the Q-vector space of formal finite sums∑

i

qi [Si ,Li ],

for surfaces Si with a line bundle Li , subject to the following two
conditions:

I [W ,L] = [Z ,M] for algebraically cobordant (W ,L) and
(Z ,M);

I [S1
∐

S2,L] = [S1,L|S1 ] + [S2,L|S1 ] for all surfaces S1 and S2

and a line bundle L on the disjoint union S1
∐

S2.
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The proof

Algebraic cobordism

Algebraic cobordism classes and Chern numbers

We can calculate Chern numbers for such sums of surfaces, or even
surfaces with a line bundle, by calculating the analogous Chern
number of all terms.

Algebraic cobordism is determined by Chern numbers

Any class
∑

qi [Si ] in algebraic cobordism is uniquely determined
by the Chern numbers of the respective tangent bundles.

So the class of [S ] is uniquely determined by c1(TS)2 and c2(TS).

Algebraic cobordism with line bundles by Chern numbers

Any class
∑

qi [Si ,Li ] in ω2,1 is uniquely determined by the Chern
numbers of the tangent bundle and line bundles.

So the class of [S ,L] is uniquely determined by c1(L)2,
c1(L)c1(TS), c1(TS)2 and c2(TS).
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Generating function
For a surface S with a line bundle L, Göttsche defined a space S2δ

of dimension 2δ and a vector bundle L3δ of rank 3δ.

Let dδ(S ,L) denote the number of points in the Chern number
c2δ(L3δ) and define d0(S ,L) = 1.

Göttsche (1997)

If L is a (5δ − 1)-ample line bundle on a surface, then dδ(L)
equals the number δ-nodal curves in L.

Generating function of Chern numbers

We define
φ(S ,L) =

∑
k≥0

dk(S ,L)xk .
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Tzeng (2012)

Let S = S1
∐

S2 be the disjoint union of two surfaces with a line
bundle L on S . Then we have

φ(S ,L) = φ(S1,L|S1)φ(S2,L|S2).

For any algebraically cobordant pair (W ,M), (Z ,N ) of surfaces
we have

φ(W ,M) = φ(Z ,N ).
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Group homomorphism

The two results of Tzeng give us exactly the following theorem.

Tzeng (2012)

The map φ extends to a linear map

ω2,1 → Q[[t]]∗

of vector spaces over Q.
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Basis polynomials

By the map φ we get four polynomials A(x), B(x), C (x) and D(x)
corresponding to the four Chern numbers, which form a basis for
Q4 ∼= ω2,1. So

φ(S ,L) = A(x)c1(L)
2
B(x)c1(L)c1(TS )C (x)c1(TS )

2
D(x)c2(TS ).
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Writing A(x) = 1 + a1x + a2x2 + . . . and similarly for B(x), C (x)
and D(x), we get

φ(S ,L) = (1 + a1x + . . .)κ (1 + b1x + . . .)λ ·
(1 + c1x + . . .)µ (1 + d1x + . . .)ν

= 1 + (a1κ+ b1λ+ c1µ+ d1ν) x

+

(
a2κ+

(
κ

2

)
a21 + b2λ+

(
λ

2

)
b2
1+

c2µ+

(
µ

2

)
c2
1 + d2ν +

(
ν

2

)
d2
1

)
x2

+ . . .

d1(S ,L)
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If we calculate the coefficients, we get

d1 = 3κ− 2λ+ ν,

d2 =
1

2
(d1(d1 − 7)− 6µ+ 25λ− 21κ) .

Nodal polynomials

The number dk is a polynomial of degree k in κ, λ, µ and ν.

If L is a l-ample line bundle on S , then by Göttsche’s result we see
that for 0 ≤ δ ≤ b l+1

5 c we have that dδ equals the number of
nodal curves in a general δ-dimensional plane in P(L).

Kool, Shende and Thomas even proved that the statement holds
for all 0 ≤ δ ≤ l .
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The Severi degree N d ,1

Let us calculate Chern subspace for TP2 .
Use x d

dx and y d
dy for c1(TP2):

This gives the two axes and the line at infinity.

Use x d
dx + y d

dy for c2(TP2):
This vanishes precisely at [1 : 0 : 0], [0 : 1 : 0] and [0 : 0 : 1].

So c1(L)2 = d2, c1(L)c1(TS) = 3d , c1(TS)2 = 9 and c2(TS) = 3.

This gives

d1(P2,O(d)) = 3κ− 2λ+ ν = 3d2 − 2 · 3d + 3 = 3(d − 1)2.
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Thank you for your attention
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Table of Severi degrees
1 2 3 4 5 6 7

N d ,0 1 1 1 1 1 1 1
N d ,1 0 3 12 27 48 75 108
N d ,2 0 0 21 225 882 2370 5175
N d ,3 0 0 15 675 7915 41310 145383
N d ,4 0 0 0 666 36975 437517 2667375
N d ,5 0 0 0 378 90027 2931831 33720354
N d ,6 0 0 0 105 109781 12597900 302280963
N d ,7 0 0 0 0 65949 34602705 1950179922
N d ,8 0 0 0 0 26136 59809860 9108238023
N d ,9 0 0 0 0 6930 63338881 30777542450
N d ,10 0 0 0 0 945 40047888 74808824084

The table is from Plane curves, node polynomials and floor
diagrams, F.S. Block’s dissertation at the University of Michigan
2001.
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Definition of Hilbert schemes
Let k be a non-negative integer and S a surface. A space S |k|

whose points represent k points in S is called a Hilbert scheme
of points.

(
P2
)|3|

2 / 7



Nodal curves on surfaces

Properties of Hilbert schemes

Any smooth projective surface has a unique Hilbert scheme of k
points, and it is

I smooth;

I of dimension 2k;

I proper.
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Non-reduced points

What happens if two points coincide?

(
P2
)|k|

?
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Degree d functions on Hilbert scheme of the projective
plane

Consider the projective plane and the Hilbert scheme of k points.

I A degree d function can be evaluated at the k points
represented by the point on the Hilbert scheme.

I This gives a vector bundle O(d)k on the Hilbert scheme with
the same global sections but of rank k!

I It will vanish if the corresponding degree d curve passes
through these points.

I If it vanishes at a point representing a double point, the
corresponding curve admits the corresponding tangent.

Similarly, a line bundle L on a surface S will give a vector bundle
Lk on S |k| of rank k.
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Singular points
To ensure we get singularities, we want a point with two distinct
tangent direction with length zero!

“Singular points” on the Hilbert scheme

Let us write S2δ for the points in S |3δ| consisting of δ points each
given with two zero directions. It has dimension 2δ.

(
P2
)|3δ|
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The number of δ-nodal curves

The vector bundle L3δ on the Hilbert scheme of 3δ points of a
surface S restricts to a vector bundle on S2δ, the subspace of
“singular points” on the Hilbert scheme.

Let dδ(L) denote the number of points in the Chern number
c2δ(L3δ).

Göttsche (1997)

If L is a (5δ − 1)-ample line bundle on a surface, then dδ(L)
equals the number δ-nodal curves in L.
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